SGK1 Inhibition and Attenuation of the Action Potential Duration in Re-Engineered Heart Cell Models of Drug-Induced QT Prolongation

David J. Tester, BS¹, Philip T. Sager, MD^{2,4}, Maengjo Kim, PhD¹, Sabindra Pradhananga, PhD², Samantha K. Hamrick, BS¹, Dinesh Srinivasan, PhD², Saumya Das, MD, PhD^{2,3}, and Michael J. Ackerman, MD, PhD¹

¹Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; ²Thryv Therapeutics, Inc. ³Cardiovascular Research Center, Mass General Hospital, Boston, MA. ⁴Cardiovascular Research Institute, Stanford University, Palo Alto, CA

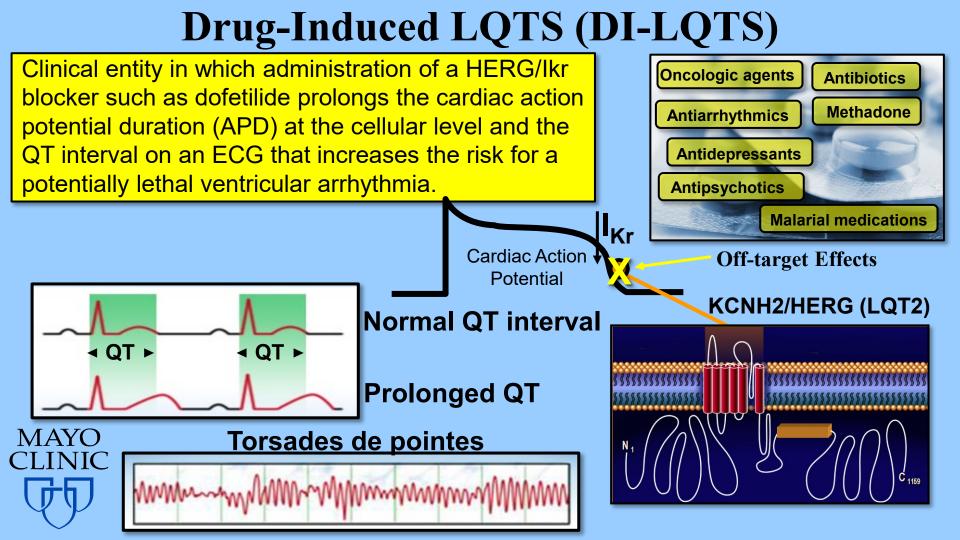
MAYO CLINIC CLINIC

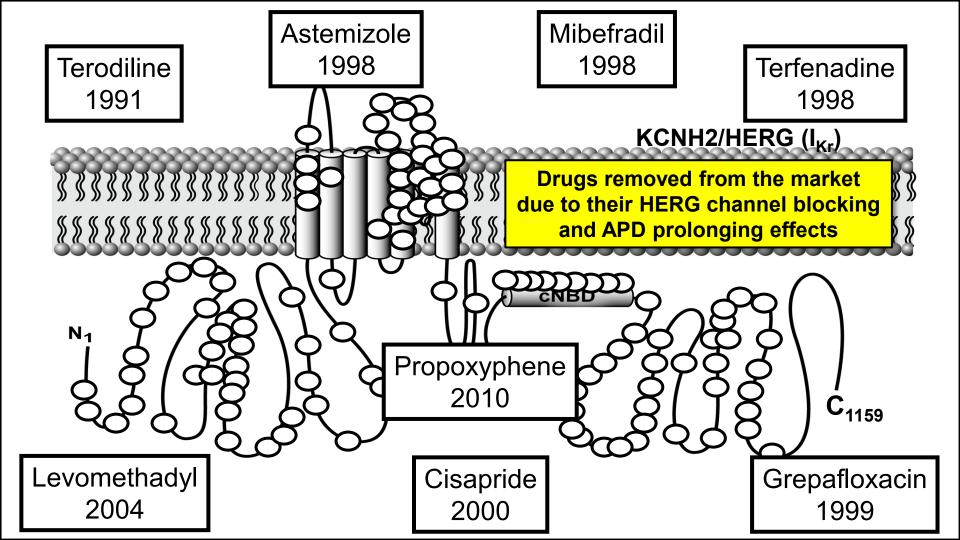
American Heart Association Scientific Sessions Chicago, Illinois

November 5-7, 2022

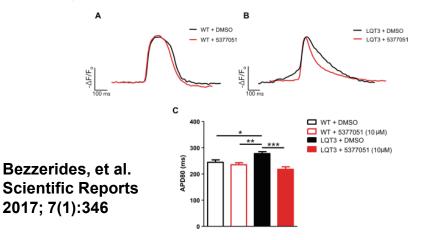
FINANCIAL DISCLOSURE

Dr. Ackerman is a consultant for Abbott, Boston Scientific, Bristol Myers Squibb, Daiichi Sankyo, Invitae, Medtronic, Tenaya Therapeutics, and Thryv Therapeutics. Dr. Ackerman and Mayo Clinic are involved in an equity/IP/royalty relationship with AliveCor, Anumana, ARMGO Pharma, Pfizer, and UpToDate. Dr. Das is a scientific founder and has received equity for Thryv Therapeutics, Inc and Switch Therapeutics and has a consulting relationship with Thryv Therapeutics and Renovacor. Dr. Sager is a scientific founder of and employee for Thryv Therapeutics and has received equity.


FUNDING SOURCES


This work was supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program and by an industry-sponsored research agreement with Thryv Therapeutics.

November 5-7, 2022 Chicago, IL + Virtual

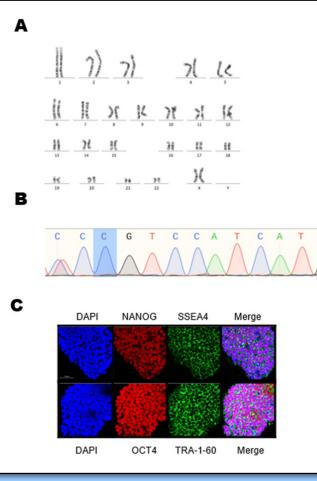


Serum and glucocorticoid regulated kinase-1 (SGK1) is an important regulator of (SCN5A) Nav1.5-mediated I_{Na} in the heart.

- Small molecule inhibitors of SGK1 may be anti-arrhythmic in cardiac diseases through attenuation of the abnormally increased late I_{Na}.
- There may be a role for inhibition of late I_{Na} to counter drug-induced LQTS (DI-LQTS).
- Recently, we have shown that inhibition of SGK1 reduces the APD90 in iPSC-CM's derived from a patient with LQT3 and attenuates the increase in late I_{Na}.

Objective: To test the efficacy of a novel SGK1 inhibitor (SGK-I) in re-engineered cardiomyocyte models of dofetilide-induced APD prolongation

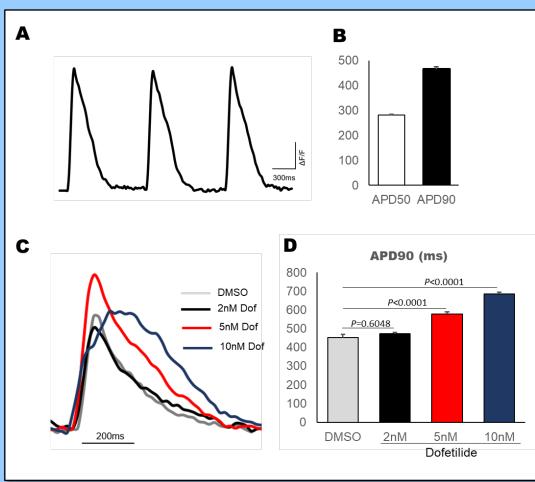
OPEN Inhibition of serum and glucocorticoid regulated kinase-1 as novel therapy for cardiac arrhythmia disorders



Study Design

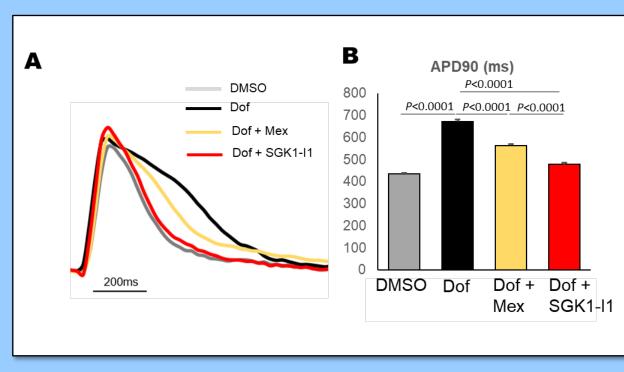
- Induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) were generated from a patient with a pathogenic variant in SCN5A (c.3965C>T, p.P1332L).
- A CRISPR/Cas9 P1332L variant-corrected isogenic control (IC) was created and served as the normal iPSC-CM line for this study.
- Normal iPSC-CMs were treated with dofetilide [5 nM] to produce a drug induced QT-prolongation (DI-QTP) iPSC-CM model.
- The SGK1-I's therapeutic efficacy for shortening the dofetilide-induced APD90 prolongation was compared to mexiletine.
- The APD90 values were recorded 4 hours after treatment using the voltage-sensing dye, FluoVolt.
 MAYO

Generation and confirmation of normal iPSC line.



- Normal iPSCs showed a normal female karyotype.
- Sanger sequencing chromatograms showing the wild-type sequence CCG(P) by gene corrected via CRISPR/Cas9 technology from the heterozygous SCN5A-P1332L variant, CCG (P) and CTG(L), in patient iPSCs.
- Representative confocal images of induced pluripotent stem cells (iPSCs) reprogrammed from the normal IPS cell line. The iPSCs demonstrated pluripotent markers (NANOG, SSEA4, OCT4, and TRA-1-60). Scale bar, 20 µm.

Dofetilide prolonged the action potential duration in normal iPSC-CMs



 At baseline, the re-engineered as normal iPSC-CMs showed a normal APD at 50% repolarization (APD50, 281 ± 4 ms, n=16) and at 90% repolarization (APD90, 466 ± 9 ms, n=16) when paced at a frequency of 1 Hz.

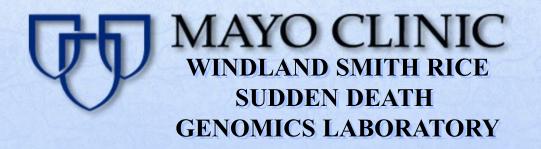
 Two hours after the treatment with dofetilide, the iPSC-CMs demonstrated prolonged APD90 in a dosage dependent manner with a response to 5 nM (APD90, 578 ± 12 ms, n=19, p<0.0001) and 10 nM (APD90, 686 ± 9 ms, n=19, p<0.0001) concentrations of dofetilide.

APD shortening effects of a novel SGK1 inhibitor compound in dofetilide treated iPSC-CMs

MAYO CLINIC

- The APD90 was significantly prolonged in normal iPSC-CMs treated with 5 nM dofetilide (673 \pm 8 ms, n=93, p<0.0001) compared to DMSO (436 \pm 4 ms, n=74).
- While 10 μ M mexiletine shortened the average APD90 of dofetilide-treated normal iPSC-CMs from 673 ± 4 ms to 563 ± 8 ms (n=96, 46% attenuation, p<0.0001), 30 nM of SGK1-I1 shortened the APD90 from 673 ± 4 ms to 502 ± 7 ms (n=74, 72% attenuation, p<0.0001).

Conclusions


- Therapeutically inhibiting serum and glucocorticoid regulated kinase-1 (SGK1) effectively shortens the cardiomyocyte APD in a human heart cell model of drug-induced QT prolongation.
- The novel SGK1 inhibitor attenuated the pathological APD prolongation substantially (> 70%) in the iPSC-CM model treated with dofetilide.
- This pre-clinical data supports further development of this therapeutic strategy to counter and neutralize drug-induced QT prolongation and its potential threat of drug-induced sudden cardiac death thereby increasing the safety profile for patients receiving drugs with torsadogenic potential.

"To heal the sick and advance the science" Dr. Charles W. Mayo

